MEEN 3210 Heat Transfer Summer 2021

Instructor: Xiaohua Li Office: NTDP F101G; Tel: 940-369-8020; xiaohua.li@unt.edu

Lecture Time: Tuesday & Thursday 02:00 p.m.-03:50 p.m.

Remotely Delivery Zoom lecture link:

Join URL: https://unt.zoom.us/j/88243124962

Office Hours: Email to make appointment for Zoom Meeting

Required Textbook: Introduction to Heat Transfer, 6th edition

Incropera, DeWitt, Berman, & Lavine

ISBN-13: 978-0-470-50196-2

Course Description: This is a required course in MEE program

3 hours. A basic course covers the fundamentals of heat transfer by conduction, convection and radiation, together with applications to typical engineering systems. Topics include one- and Two-dimensional steady state heat conduction, transient heat conduction, internal convection, external convection, and natural convection

Pre-requisites: MEEN 3110/3120/3250

Course Learning Outcomes (CLO):

Upon successful completion of this course, students will able to:

- 1. Apply conservation of mass, momentum, and energy to heat transfer problems.
- 2. Understand the concepts of one-dimensional steady-state heat conduction.
- 3. Understand the concepts of multi-dimensional steady-state heat conduction.
- 4. Understand the concepts of transient heat conduction.
- 5. Use thermal circuit method to solve heat transfer problems.
- 6. Understand the concepts of internal forced convection for both laminar and turbulent flows.
- 7. Understand the concepts of external forced convection for both laminar and turbulent flows.
- 8. Understand the concepts of natural convection.
- 9. Understand the basic theory behind radiation heat transfer.

ABET Student Learning Outcomes (SO)

- 1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
- 2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
- 3. an ability to communicate effectively with a range of audiences
- 4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- 5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- 6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
- 7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies

CLO	ABET Student Outcomes (SO)						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
1	X						
2	X						
3	X						
4	X						
5	X						
6	X						
7	X						
8	X						
9	X						

Grades: Homework (10) 10% ≥ 90 A Quizzes (highest 3/6) 10% 80-89.9 В Exam #1 (Ch1, 2&3) 25% 70-79.9 C Exam #2 (Ch4, 5&6) 25% 60-69.9 D < 60 Final (Exam #3) (Ch 7, 8 &9) F 25% Class Participation 5% 100% Total

MEEN 3210 Heat Transfer Schedule Overview

Week	Date	Topic			
#1	Jun. 1	Overview of syllabus; Ch.1: introduction			
	Jun. 3	Ch.1: introduction to heat transfer: three modes of heat transfer			
#2	Jun. 8	Ch 2: introduction to conduction: Thermal Conductivities			
	Jun. 10	Ch 2: introduction to conduction: The Heat Equation;			
#3	Jun. 15 Jun. 17	Ch 3: One Dimensional, Steady-State Conduction: Plain Wall and Thermal			
		Resistance Concept			
		Ch 3: One Dimensional, Steady-State Conduction: Thermal Circuit Method;			
#4	Jun. 22	Ch 3: One Dimensional, Steady-State Conduction: Extended Surface			
	Jun. 24	Ch 3: One Dimensional, Steady-State Conduction: Extended Surface			
#5	Jun. 29	Review and HW Session			
	Jul. 1	-Exam #1:covers Ch 1,2 and 3			
#6	Jul. 6	Ch 4: Two-dimensional Steady State Conduction: Finite Difference Method Ch 5: Transient conduction: LCM method			
	Jul. 8				
#7	Jul. 13	Ch 5: Transient conduction: Exact Solution & one term approximation			
	Jul. 15	Ch 6: Introduction to convection: Convection Boundary Layers			
#8	Jul. 20	Exam #2: covers Ch 4, 5 and 6			
	Jul. 22	Ch 7: External Flow: Flat Plate in Parallel Flow			
#9	Jul. 27	Ch 7: External Flow: Cylinder & Sphere in Cross Flow			
	Jul. 29	Ch 8: Internal Flow: Hydrodynamic & thermal considerations			
#10	Aug. 3	Ch 8: Internal Flow: Energy Balance			
	Aug. 5	Ch 9: Free convection			
	Aug. 6	Exam #3 (Final): covers Ch 7, 8, 9			

Syllabus UNT ME Department MEEN 3210 Heat Transfer Page 2 of 2